Ремонт термоэлектрических преобразователей

Осмотр термоэлектрических преобразователей



ремонт термопарТермопреобразователь разбирают на отдельные части, очищают их от грязищи и кропотливо осматривают с целью выяснения состояния термоэлектродов и их рабочего конца, зажимов на вкладыше головки и самого вкладыша, глиняного изоляционного вкладыша (стаканчика) для рабочего конца термопары, защитной трубки.

При осмотре термопар, у каких термоэлектроды сделаны из неблагородных металлов либо сплавов (медь, копель, хромель, алюмель и др.), инспектируют отсутствие поперечных трещинок, которые время от времени возникают в итоге долговременной работы термопреобразователя при больших для термоэлектродов температурах либо вследствие нередких попеременных конфигураций температуры исследуемой среды, то в сторону увеличения, то в сторону снижения.

Возникновение трещинок в термоэлектродах может быть также следствием механических напряжений от неверного армирования термопреобразователя. Так, применение двухканальных изоляторов при толстых термоэлектродах нередко приводит к выходу термопреобразователей из строя. Неприемлимо, чтоб термопара, в особенности сделанная из толстых термоэлектродов, своим рабочим концом упиралась в дно защитной трубки либо изоляционного глиняного вкладыша (стаканчика).

При наружном осмотре термопар, термоэлектроды которых изготовляются из великодушных металлов либо сплавов (платина, платинородий

и др.), инспектируют отсутствие на их поверхности «пересечек» — маленьких ложбинок вроде бы от удара ножиком. При их обнаружении термоэлектроды в местах, где увидены «пересечки», разрывают и сваривают.

Отжиг термопар из великодушных металлов



ремонт термопарВ эксплуатационных критериях при очень больших температурах не всегда удается защитить платинородиевые и платиновые термоэлектроды от воздействия на их восстановительной газовой среды (водород, оксид углерода, углеводороды) и брутальных газовых сред (углекислота) в присутствии паров оксидов железа, магния и кремния. Кремний, присутствующий практически во всех глиняних материалах, представляет собой самую большую опасность для платинородий-платиновых термопреобразователей.

Термоэлектроды этих термопреобразователей просто его поглощают с образованием силицидов платины. Происходит изменение термо-ЭДС, миниатюризируется механическая крепкость термоэлектродов, время от времени они стопроцентно разрушаются в связи с появившейся хрупкостью. Неблагоприятное воздействие оказывает присутствие угольных материалов, к примеру графита, потому что в их есть примеси кремнезема, который при больших температурах в контакте с углем просто восстанавливается с выделением кремния.

Для удаления загрязняющих веществ из термоэлектродов великодушных металлов либо сплавов термопары подвергают отжигу (прокаливанию) в течение 30…60 мин электронным током на воздухе. Для этого термоэлектроды высвобождают от изоляторов и подвешивают на 2-ух штативах, после этого обезжиривают с помощью тампона, смоченного незапятнанным этиловым спиртом (1 г спирта на каждый чувствительный элемент). Свободные концы термоэлектродов подключают к электронной сети напряжением 220 либо 127 В частотой 50 Гц. Ток, нужный для отжига, регулируют средством регулятора напряжения и держут под контролем по свидетельствам амперметра.



ремонт термопарЧувствительные элементы термопреобразователей с градуировочной чертой ПП (платинородий — платина) с термоэлектродами поперечником 0,5 мм отжигают при токе 10

— 10,5 А [температура (1150 + 50) °С], чувствительные элементы с градуировочной чертой типа ПР-30/6 [платинородий (30 %) — платинородий (6 %)] отжигают при токе

11,5…12 А [температура (1450 + 50) °С].

Во время отжига термоэлектроды промывают бурой. Для этого на жестяную либо какую-либо другую пластинку насыпают буру и потом пластинку передвигают повдоль нагретого термоэлектрода таким макаром, чтоб он был погружен в буру (не забывать об электропроводности пластинки). Довольно 3

— 4 раза провести пластинкой с бурой повдоль термоэлектрода, чтоб платинородий и платина были незапятнанными, без поверхностных загрязнений.

Может быть рекомендован и другой метод: по раскаленному термоэлектроду сплавляют каплю буры, давая этой капле свободно скатываться.

По окончании отжига ток плавненько уменьшают до нулевого значения в течение 60 с.

После чистки оставшуюся на термоэлектродах буру убирают: большие капли — механически, а слабенькие остатки — промывкой в дистиллированной воде. Потом термопару вновь отжигают. Время от времени промывки бурой и отжига бывает недостаточно, потому что термоэлектроды все таки остаются жесткими. Это показывает на то, что платина поглотила кремний либо другие несгорающие элементы и нужна чистка на аффинажном заводе, куда и направляют термоэлектроды. Так же поступают, если на термоэлектродах остаются поверхностные загрязнения.


Проверка однородности термоэлектродов



ремонт термопарПри практическом использовании термопреобразователя всегда находится некая разница температур повдоль длины его

термоэлектродов. Рабочий конец термопреобразователя обычно размещается в зоне наивысшей температуры, к примеру в центре дымопровода. Если перемещать некоторый измеритель температуры, к примеру рабочий конец термопреобразователя (присоединенный к другому милливольтметру), повдоль термоэлектродов первого термопреобразователя в направлении от рабочего к свободным концам, то будет отмечаться уменьшение температуры по мере удаления от центра дымопровода к его стенам.

Любой из термоэлектродов по длине обычно обладает неоднородностью (негомогенностью) — сказываются малозначительное различие в составе сплава, наклеп, механические напряжения, местное загрязнение и т. п.

В итоге неравномерного рассредотачивания температуры повдоль термоэлектродов и их неоднородности в термоэлектрической цепи появляются присущие точкам неоднородности термоэлектродов собственные термо-ЭДС, часть которых суммируется, часть вычитается, но все это приводит к искажению результата измерения температуры.

С целью уменьшения воздействия неоднородности каждый термоэлектрод термопар из великодушных металлов, в особенности примерных, после отжига инспектируют на однородность.

Для этого выпрямленный проверяемый термоэлектрод вводят в невключенную маленькую трубчатую электропечь, способную при нагревании создавать местное термическое поле. К положительному термоэлектроду присоединяют отрицательный зажим чувствительного нулевого гальванометра, к положительному зажиму этого гальванометра подключают положительный зажим источника регулируемого напряжения (ИРН), а к отрицательному зажиму ИРН — отрицательный термоэлектрод термопары. Такое включение ИРН дает возможность скомпенсировать (уравновесить) термо-ЭДС термопары напряжением от ИРН. Чтоб не разрушить чувствительный нулевой гальванометр, сначала заместо него включают более твердый нулевой гальванометр, создают компенсацию термо-ЭДС, потом меняют местами нулевые гальванометры и делают окончательную компенсацию термо-ЭДС, используя реостаты плавного регулирования ИРН и чувствительный нулевой гальванометр.

Включают электропечь, делают местный прогрев исследуемого термоэлектрода и медлительно протягивают его через печь по всей его длине. При однородности металла либо сплава термоэлектрода указатель нулевого гальванометра будет находиться на нулевой отметке. В случае же

неоднородности термоэлектродной проволоки указатель нулевого гальванометра отклонится на лево либо на право от нулевой отметки. Неоднородный участок термоэлектрода вырезают, концы сваривают и спай инспектируют на однородность.

При наличии малозначительной неоднородности, когда дополнительная термо-ЭДС не превосходит половины допускаемой погрешности для термо-ЭДС данной пары, участок термоэлектрода не вырезают и с обозначенной неоднородностью не числятся.

Подготовка термоэлектродов к сварке

Если позволяет длина оставшихся несгоревшими термоэлектродов, заместо разрушенного рабочего конца изготавливают новый.

Если имеется возможность сделать термопару из новых термоэлектродов, самым кропотливым образом инспектируют соответствие материала термоэлектродов изготавливаемому термопреобразователю, чтоб убедиться в его качественности.

Для этого на основании нормативных документов устанавливают род материала, его техно характеристику, результаты тесты материала ОТК (отделом технического контроля) завода-изготовителя. При согласовании этих данных техническим требованиям материал может быть применен; в неприятном случае его подвергают испытаниям.

Для проверки однородности от бухты материала отрезают кусочек термоэлектрода длиной, превосходящей нужную для производства термопреобразователя, после этого при помощи зажимов к концам термоэлектрода подключают недлинные медные соединительные провода. Зажимы опускают в теплоизоляционные сосуды с тающим льдом (0 °С) и определяют однородность материала термоэлектрода.

Для определения рода материала и его класса от бухты отрезают около 0,5 м термоэлектрода и сваривают его с таким же кусочком платиновой проволоки. Рабочий конец приобретенной термопары помещают в паровой термостат с температурой 100 °С, а свободные концы отводят в теплоизоляционные сосуды с тающим льдом (0

°С) и соединяют медными проводами с потенциометром. По термо-ЭДС, развиваемой термопарой, определяют род и класс материала.

По внешнему облику хромель от алюмеля отличается некординально, но хромель более тверд, чем алюмель, что просто определяется при изгибании, и, не считая того, алюмель магнитен в отличие от немагнитного хромеля.